Fermi National Accelerator Laboratory

het

FERMILAB-Conf-89/220

Designing Machines for Lattice Physics and
Algorithm Investigation*

M. Fischler, R. Atac, A. Cook, J. Deppe, E. Eichten, I. Gaines, M. Gao,
G. Hockney, D. Husby, A. Kronfeld, P. Mackenzie, T. Nash, T. Pham, and T. Zmuda

Fermi National Accelerator Laboratory
P.0. Box 500, Batavia, Illinois 60510

October 1989

*Presented by M. Fischler at the International Workshop “LATTICE 89, Isola di Capri, Italy, September 18-21, 1989.
Proceedings to be published in Nucl. Phys. B, Proceedings Supplement Section.
J€

A Operated by Universities Research Association Inc. under contract with the United States Department of Energy



DESIGNING MACHINES FOR LATTICE PHYSICS AND ALGORITHM INVESTIGATION

M. Fischler, R. Atac, A. Cook, J. Deppe, E. Eichten, |. Gaines, M. Gao, G. Hockney, D. Husby,

A. Kronfeld, P. Mackenzie, T. Nash, T. Pham and T. Zmuda

Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA*

Special-purpose computers are appropriate tools for the study of lattice gauge theory. While these machines
deliver considerable processing power, it is also important to be able to program complex physics ideas and
investigate algorithms on them. We examine features that facilitate coding of physics problems, and flexibility
in algorithms. Appropriate balances among power, memory, communications and /O capabilities are

presented.

1. INTRODUCTION

To be useful as a platform for the investigation of
algorithms and for doing a broad spectrum of physics
analyses, a system must be powerful and large enough to
do the problems of interest. Beyond that, however, are
issues of machine architecture, software tools, and
paradigms provided.

Systems range from those designed for development
to those intended to run a single program over extended
periods. Machines at either end of this spectrum have
diminished utility. Production systems need the flexibility
to do complex physics analysis based on the large field
configurations generated, and must not allow machine
restrictions to determine what physics is done.
Development systems need sufficient power to investigate
the physically interesting regions of large lattices near
critical points. In either case, the benefits of natural and
well structured coding are considerable.

Based on experience of physicists using CANOPY? grid-
oriented software tools on the ACPMAPS2 system at
Fermilab, we note hardware and software features
needed to facilitate physics coding and algorithm devel-
opment.

2. MACHINE REQUIREMENTS

Inevitably, tradeoffs occur among power, flexibility and
ease of programming. An algorithm development system
will resolve these emphasizing programming issues,
rather than peak efficiency per unit cost. Such a system
should not be designed around a particular algorithm in
mind — flexibility should be the major goal. These
considerations cannot be taken to extremes. For
example, it is appropriate to design an architecture for
site-oriented problems, rather than a completely general-
purpose system.

Features which facilitate algorithm development
include large memory, transparent and fast global com-
munication, large-scale I/O capabilities, modularity, and
multiple instruction stream architecture. A guantitative
feel for these factors can be obtained by doing physics on
a flexible system and noting where the development
process is affected.

Memory should be large enough that it is not the pri-
mary factor in choosing algorithms or lattice sizes (this is
somewhat problem dependant). Interprocessor commu-
nication must be fast enough, in terms of overhead and
bandwidth, that desired algorithms are not communica-

* Fermilab is operated by Universities Research Association, Inc. under contract # DE-AC02-76CH03000 with the

U.S. Department of Energy.



tions bound. In order to investigate non-local algorithms,
global communications are needed.

The 1/O system should be large and fast enough for
temporary data storage, and must include archiving
capabilities, since generated data will often require mul-
tiple passes of physics analysis. The system should be
expandable to whatever levels of CPU and I/O power are
appropriate.

Multiple instruction, multiple data (MIMD) architecture
can handle problems which are awkward or impossible
for single instruction, multiple data (SIMD) architectures,
such as heat bath and incomplete LU decomposition
algorithms3 and random lattice problems. Even for algo-
rithms which can be cast into SIMD form, MIMD archi-
tecture simplifies the implementation of software tools to
facilitate coding. It also makes it easy to decouple lattice
sizes and shapes from the hardware details.

There is no simple dichotomy between SIMD and
MIMD. The extreme case of multiple instruction streams

would be each CPU proceeding whenever data is ready, -

without centralized control — this may be awkward for
tightly coupled problems. For lattice physics, it is natural
to consider algorithms to be done in steps — the proces-
sors act independently during each "task", but re-syn-
chronize at the end of each step. The ACPMAPS system
is used in this way. Less flexible are systems which are
MIMD in processing, but require lockstep communication
(e.g. the Columbia machine4; these are often called SIMD
systems, because for tightly coupled problems their MIMD
potential is rarely important.
machines act as MIMD systems; vector machines behave

Uniprocessor scalar

like SIMD systems. Here too, the "SIMD" machine may be
more efficient, but is harder to program and less flexible.

3. SOFTWARE DESIGN

A package of tools to be used by applications pro-
grams should provide an "underpinning” for physics code.
The goals should be to minimize the programming efforts
needed, to provide a natural coding environment, and to
maximize the chances that programs will be correct.
Absent from these primary goals is efficiency. However,

many ubiquitous operations (such as accessing data
from neighboring sites) are done by the software under-
pinning. Those operations can be optimized once and for
all. A user sensitive to efficiency can concentrate on rou-
tines particular to one problem. For these reasons, the
cost of using of a convenient set of underpinning routines
can be low. For example, the heat-bath link update time
per link is about the same (relative to peak power) for
ACPMAPS as for the less flexible APE5, GF116,
QCDPAX7?, and Columbia 256-node machines.

Since the user wants to concentrate on the physics or
algorithm being coded, the tools provided should handle
grid related and machine dependant issues. The multi-
processing nature of the system should be transparent;
the parallelism over sites automated, and the grid connec-
tivity structure should be implemented in a natural and
automatic way. The environment must allow easy coding,
and encourage well organized programs, which are
easier for other physicists understand and build upon.
The tools should be implemented on a variety of systems,
so programs are portable.

On ACPMAPS, this software underpinning is provided
by CANOPY, a set of routines expressing a natural
"paradigm” of how lattice problems look. We assume that
the problem can be expressed in terms of grids, consist-
ing of sites, with data at each site; the algorithm consists
of a sequence of tasks, each done for some set of sites.
This is the natural paradigm for lattice gauge algorithms,
and for a large variety of other scientific problems.

A program using CANOPY has two parts: the control
program, and task routines. The control program man-
ages global matters such as defining lattices and fields
and starting lattice-wide operations on "fields". The per-
site data structures are fields—the data associated with
each site is kept on the node responsible for executing
tasks for that site. Instead of constructing loops over
sites, the CANOPY user calls do_task to execute the task
routine for an entire set of sites—the multinode nature of
the system is transparent. Access to field data is via
CANOPY routines, which compute the location of the data
and perform any internode communication necessary—
the distribution of data among nodes is also hidden.



Fundamental CANOPY concepts include grids, sites
on a grid, fields on each site, link fields, directions along
the grid, paths, and maps between grids. These geo-
metric concepts automate the “routine” (but error-prone)
portions of the algorithm.

CANOPY is written in C and is easily portable to sin-
gle-CPU or MIMD systems which support UNIX calls.
Thus, programs can originate on a workstation, and
migrate to production machines without changing any
code. The software has been implemented on the
ACPMAPS system, and several single-CPU and a smaller
multiprocessing system. CANOPY applications tend to
be structured and modular. This leads to more readable
code, easier modification and debugging, and the ability
to confidently optimize time-critical routines.

The natural language for working with CANOPY
concepts is C, although Fortran subroutines are also sup-
ported. UNIX system calls are supported, and the system
is networked with other computers, for ease in handling
programs, inputs, and result summary data.

The ability to split a machine into several partitions,
with one user running on each pan, is very important. The
alternative would be to provide several development ma-
chines of varying sizes; aside from inefficiency, that has
the drawback of having to guess the "right" sizes. An in-
telligent scheduler allocates resources to each user, bal-
ancing the needs of production running with the rapid
turnaround desired for development.

4. THE ACPMAPS HARDWARE

The ACPMAPS machine satisfies the requirements for
algorithm development and production running. The sys-
tem shares some features with most other special-
purpose lattice gauge engines: it is powered by many
processors, each with its own local memory and some
means of accessing other processors’ data. However, it is
a MIMD system, with transparent global communication.
The current ACPMAPS system uses 256 processing
nodes, providing 5 Gfiops of peak power.

The processor nodes for ACPMAPS are based on the
Weitek XL-8032 chip set, which provides an integrated

integer/floating point computer with support for C and
Fortran. 8 Mbytes of data and 2 Mbytes of instruction
memory are on each 20 Mflop processor8. Each node
works asynchronously and, in general, on different num-
bers of sites for each task. Processors empioying the XL-
3164 FPU for double precision are also available.

The key flexibility feature of the ACPMAPS hardware
is fast, asynchronous, transparent global communication.
The nodes plug into a network of switch crates®, whose
backplanes implement sixteen port crossbar switching at
bandwidths of 20 Mbytes/second per channel. These bus
switch backplane crates are interconnected by 20
Mbytes/sec cables. Each crate contains a PROM which
provides routing information. The communications sys-
tem is logically equivalent to a telephone switching
network — a channel is opened by specifying the destina-
tion, and data is transmitted independent of other
channels opened. The current switch crate hardware
supports systems of up to 2048 devices.

The topology chosen for the 256-node ACPMAPS
system is that of a 25 hypercube of crates, each containing
eight processors. Switching times are .5 psec per
connection; processor overhead for estabiishing the
communications channel is 3-4 psec. Because each
node needs only one communications interface, the
expense for communications may be less than that for
systems with hardwired neighbor grids.

The /O subsystem design includes 32 SCSI-based
disk drives (allowing for a high bandwidth to 20 Gbytes of
distributed disk) and 32 Exabyte tape drives for archiving
fields. A tape system alone is not sufficient for production
or deveiopment work. The disks provide the ability to:
-climinate tape mount and seek overheads; *share data
files; erearrange data before writing it to tape (e.g.
propagators in time slice order); swap out long jobs,
making possible reasonable turnaround for development;
*Store temporary large data fields, under user control, to
soften memory limitations. CANOPY routines handle the
distributed 1/O; the user reads or writes fields, and is not
concerned with how many nodes or disks are involved.

The system is hosted by a UNIX computer, capable of



accessing the nodes and the I/O devices, and networked
to other lab computers.

5. QUANTITATIVE REQUIREMENTS

The following observations are based on several
physicists' use of ACPMAPS for a few months, doing
quenched configuration and propagator generation and
physics analysis10. Nobody has a surplus of power;
therefore, all other requirements are "per effective
megaflop” rather than absolute. The effective power of
each node can be derived from the time taken (.6 msec)
per link update; this works out to about 8 Mfiops.

8 Mbytes of data memory per node seems barely suf-
ficient. There are instances of "stuffing in as big a lattice
as you can", and the consensus is that "any less would be
awkward”. Thus, memory size of 1-2 Mbytes/Mflop
may be a good balance. (Dynamical fermions require
more power, but algorithm improvements tend to
decrease power needs.) The bandwidth to memory in
ACPMAPS is 40 Mbytes/sec; we can experimentally halve
that, costing 25% in performance. Thus memory
bandwidth > 2 - 3 Mbytes/sec/Mflop is needed.

Communications needs scale with power and sur-
face/volume ratio (except in lockstep systems where
communication rates affect bandwidth to local memory).
Thus a relevant number is bandwidth/power*L (L is the
geometric mean size in each dimension of the chunk of
lattice in each node). Since our intercrate bandwidth is
the earliest bottleneck, our "processing unit" is the 8-node
crate (L=14). On that basis, BL/P is 4.4, and our band-
width effects are small. For optimized conjugate gradient-
like algorithms, communications bandwidths = 2/L
Mbytes/Mflop are acceptable. Communications over-
head (Og) of 4.5 usec * 8 flops/ psec in a node (L=8)
affects performance at the 5% level. Roughly, this cost is
.01 * (Oc* power/L).

For staging and shuffling of data, the bandwidth to disk
must be capable of moving the entire memory to disk
in < 300 sec (100 sec for effective swapping). The total

disk system size needed is > 10 times memory
size. This necessitates a distributed 1/0 system.

6. SUMMARY

Special-purpose systems for lattice gauge can be
flexible and programmable enough to be useful for algo-
rithm development and complicated physics applications,
yet cost effective for production running. Results of work
done on ACPMAPS on heavy—light mesons, mass spec-
troscopy, and full QCD thermodynamics, are reported in
this volume3. A detailed study of various conjugate gra-
dient and minimal residual propagator inversion
algorithms, with various LU decomposition and FFT
preconditioners, is also described10. Methods were
found which converge more rapidly than the naive ones;
they are less effective in terms of raw flops, yet several
times better in terms of net speed. These improved
algorithms, as well as the CANOPY software that
facilitates investigations, would be difficult or impossible
to imptement efficiently on SIMD hardware.

REFERENCES

1. CANOPY Manual, G. Hockey, P. Mackenzie, and M.
Fischler, Fermilab document, available through the
authors.

2. T. Nash et al., A Site Oriented Supercomputer for
Theoretical Physics, FERMILAB-Con{-89/58, to be
published in Proceedings of the 4th Hypercubes
Concurrent Computers and Applications Conference.

3. G. Hockney, Comparison of Algorithms, this volume.

4. F. Butler, Proceedings of the 1988 Symposium on
Lattice Field Theory (North Holland), 557-561. See
also N. Christ, Status of the Columbia 256-node
Parallel Supercomputer, this volume.

5. The APE collaboration, Proceedings of 1988
Symposium on Lattice Field Theory (North Holland),
562-565.

6. J. Sexton, ibid. See also D. Weingarten, Progress
Report on the GF11 Project, this volume.

7. Y. lwasaki, Status of QCDPAX, this volume.

8. D. Husby et al. , IEEE Transactions on Nuclear
Science, NS-36, No. 1, 734-737 (1989)

9. R.Atacetal., ibid.

10.E. Eichten, B Meson Weak Interactions, this volume.
A. Kronfeld, Improved Operators for Hadrons, this
volume. D. Toussaint, Simulating QCD with a
Chemical Potential, this volume.



